Comparison between the Autism Diagnostic Interview Revised (ADI-R) and the Perceptual Behavioural Precision Scale (PS-PC-ASD) for the Diagnosis of Individuals with Autism Spectrum Disorder
PhD Manuel Ojea Rúa
Abstract
Ojea (2023) has published a Perceptual-Behavioural Precision Scale (PS-PC-ASD) for the diagnosis of individuals with autism spectrum disorder (ASD), which are made up of three main domains weighted based on the number of items that each domain contains: 1) the perceptual-cognitive domain, 2) the social domain, and 3) the practical domain, in the aim of incorporating the measurement of cognitive values that involve the level of neuropsychological and biological processing of information, starting from the input of information of the sensory-perceptual memory into the semantic and episodic memory if possible, as well as the interconceptual relationships developed by the coding processes, which provide this access through working memory.
This study compared the data resulting from the ASD' diagnosis, found in accordance with the PS-PC-ASD Scale, in relation to the Autism Diagnostic Interview Revised (ADI-R) (Rutter et al., 2003), which is based mainly on the basic criteria of the currently official International Classification of the American Psychiatric Association (APA) (2013).
The main aim of this study is therefore to observe whether there're statistically significant differences in the diagnosis of people with ASD between the two Scales, the ADI-R Scale and the PS-PC-ASD Scale.
The comparative levels, found through the Wilcoxon statistical test, showed that there were significant differences in the diagnostic results of the participants, according to diagnostic Scale applied (sig: .00).
Furthermore, the Kruskal-Wallis non-parametric test found the variables of 'gender' and 'age' of the participants were interdependent for both Scales. Results didn't were shown significant differences in the variable ‘gender’ for the ADI-R Scale, non-significant critical levels were obtained (sig: .27), nor for the PS-PC-ASD Scale (sig: .81). However, when the PS-PC-ASD Scale was used, significant critical levels were observed for the variable ‘age’ (sig: .01), whereas in the ADI-R Scale, no statistically significant levels were found for ‘age’ variable (sig: .09).
Keywords: ASD, Diagnostic Scale, Cognition, Perception, Social, Behaviour, Neuropsychological Processing.
References
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders-text revision (4th ed.). Washington, DC: Author. https://doi.org/10.1176/appi.books.9780890425596
Baribeau, D. A., Doyle-Thomas, K. A., Dupuis, A., Iaboni, A., Crosbie, J., McGinn, H., ... Anagnostou, E. (2015). Examining and comparing social perception abilities across childhood-onset neurodevelopmental disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 54, 479–486. https://pubmed.ncbi.nlm.nih.gov/26004663/
Boogert, N. J, Giraldeau, L. A., & Lefebvre L. (2008). Song complexity correlates with learning ability in zebra finch males. Anim. Behav., 76, 51735–41. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://biology.mcgill.ca/faculty/lefebvre/articles/boogert_song&learning_08.pdf
Bramao, I., Karlsson, A., & Johannson, M. (2017). Mental Reinstatement of encoding Context Improves Episodic Remembering. Cortex, 94(1), 15-26. https://pubmed.ncbi.nlm.nih.gov/28710908/
Brunsdon, V. E., & Happé, F. (2014). Exploring the ‘fractionation’ of autism at the cognitive level. Autism, 18(1), 17–30. https://pubmed.ncbi.nlm.nih.gov/24126870/
Colombi, C., Liebal, K., Tomasello, M., Young, G., Warneken, F., & Rogers, S. J. (2009). Examining correlates of cooperation in autism imitation, joint attention, and understanding intentions. Autism, 13, 2143–63. https://pubmed.ncbi.nlm.nih.gov/19261685/
Cook, J. L., den Ouden, H. E. M., Heyes, C. M., & Cools, R. (2014). The social dominance paradox. Curr. Biol., 24(23), 2812–16. https://pubmed.ncbi.nlm.nih.gov/25454588/
Coveney, A. P., Switzer, T., Corrigan, M. A., & Redmond, H. P. (2013). Context-dependent memory in two learning environments: the tutorial room and the operating theatre. BMC Med Educ.,18(13) 1–7. https://pubmed.ncbi.nlm.nih.gov/24127650/
Davis, G., & Plaisted-Grant, K. (2015). Low endogenous neural noise in autism. Autism, 19(3), 351–362. https://pubmed.ncbi.nlm.nih.gov/25248666/
DeFelipe, J., Lopez-Cruz, P. L., Benavides-Piccione, R., Bielza, C., Larranaga, P., Anderson, S., ... Ascoli, G. A. (2013). New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 14(3), 202–216. https://doi.org/10.1038/ nrn3444
Doss, A. J. (2005). Evidence-based diagnosis: Incorporating diagnostic instruments into clinical practice. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 947–952. https://pubmed.ncbi.nlm.nih.gov/16113624/
Farmer, C. A., & Aman, M. G. (2009). Development of the Children’s Scale of Hostility and Aggression: Reactive/Proactive (C-SHARP). Research in Developmental Disabilities, 30, 1155–1167. https://pubmed.ncbi.nlm.nih.gov/19375274/
Fiske, S. T., & Taylor, S. E. (2013). Social Cognition: From Brains to Culture London: Sage. https://sk.sagepub.com/book/mono/social-cognition-2e/toc#_
Fletcher-Watson, S., Findlay, J. M., Leekam, S. R., & Benson, V. (2008). Rapid detection of person information in a naturalistic scene. Perception, 37, 4571–83. https://pubmed.ncbi.nlm.nih.gov/18546664/
Floyer-Lea, A., Wylezinska, M., Kincses, T., & Matthews, P. M. (2006). Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. Journal of Neurophysiology, 95(3), 1639–1644. https ://doi.org/10.1152/jn.00346 .2005
Ford, T. C., & Crewther, D. P. (2016). A comprehensive review of the 1H-MRS metabolite spectrum in autism spectrum disorder. Frontiers in Molecular Neuroscience, 9. https://doi.org/10.3389/ fnmol .2016.00014
Gaetz, W., Bloy, L., Wang, D. J., Port, R. G., Blaskey, L., Levy, S. E., & Roberts, T. P. L. (2014). GABA estimation in the brains of children on the autism spectrum: Measurement precision and regional cortical variation. Neuroimage, 86, 1–9. https://doi.org/10.1016/j.neuro image .2013.05.068
Goren, C. C., Sarty, M., & Wu, P. Y. K. (1975). Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics, 56, 4544–49. https://pubmed.ncbi.nlm.nih.gov/1165958/
Grant, H. M., Bredahl, L. C. Clay, J., Ferrie, J., Groves, J. E., McDorman, T.A., & Dark, V. J. (1998) Context dependent memory of meaningful material: Information for students. Applied Cognitive Psychology, 2(6), 617-623. https://psycnet.apa.org/record/1998-11899-006
Green, M. F, Horan, W. P, & Lee, J. (2015). Social cognition in schizophrenia. Nat. Rev. Neurosci., 16, 10620–31. https://pubmed.ncbi.nlm.nih.gov/26373471/
Happé, F., Cook, J. L., & Bird, G. (2017). The structure of social cognition: In(ter)dependence of sociocognitive processes. Annual Review of Psychology, 68, 243–267. https://www.annualreviews.org/content/journals/10.1146/annurev-psych-010416-044046
Happé, F., Frith, U. (2014). Annual research review: Towards a developmental neuroscience of atypical social cognition. J. Child Psychol. Psychiatry, 55, 6553–77. https://europepmc.org/article/med/24963529
Hashemi, E., Ariza, J., Rogers, H., Noctor, S. C., & Martinez-Cerdeno, V. (2017). The number of parvalbumin-expressing interneurons is decreased in the prefrontal cortex in autism. Cerebral Cortex, 27(3), 1931–1943. https://doi.org/10.1093/cercor/bhw021
Hattingen, E., Lückerath, C., Pellikan, S., Vronski, D., Roth, C., Knake, S., … Pilatus, U. (2014). Frontal and thalamic changes of GABA concentration indicate dysfunction of thalamofrontal networks in juvenile myoclonic epilepsy. Epilepsia, 55(7), 1030–1037. https ://doi.org/10.1111/epi.12656.
Hertrich, I., Dietrich, S., Blum, C., & Ackermann, H. (2021). The role of the dorsolateral prefrontal cortex for speech and language processing. Frontiers in Human Neuroscience, 15, Article 645209. https://doi.org/10.3389/fnhum.2021. 645209
Heyes, C. (2012). What's social about social learning?. J. Comp. Psychol., 126, 2193–202. https://pubmed.ncbi.nlm.nih.gov/21895355/
Heyes, C., & Pearce, J. M. (2015). Not-so-social learning strategies. Proc. R. Soc., 282, 1802, 20141709. https://royalsocietypublishing.org/rspb/article/282/1802/20141709/77539/Not-so-social-learning-strategiesNot-so-social
Hof, P. R., Glezer, I. I., Conde, F., Flagg, R. A., Rubin, M. B., Nimchinsky, E. A., & Vogt-Weisenhorn, D. M. (1999). Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: Phylogenetic and developmental patterns. Journal of Chemical Neuroanatomy, 16(2), 77–116. https://doi.org/10.1016/s0891-0618(98)00065-9
Holden, B., & Gitlesen, J. P. (2009). The overlap between psychiatric symptoms and challenging behaviors: A preliminary study. Research in Developmental Disabilities, 30, 210–218. https://pubmed.ncbi.nlm.nih.gov/18455364/
Hupbach, A., Hardt, O., Gomez, R., & Nadel, L. (2008). The dynamics of memory: Context-dependent updating. Learning and Memory. 15(8) 574-579. https://pubmed.ncbi.nlm.nih.gov/18685148/
International Molecular Genetic Study of Autism Consortium (IMGSAC). (2001). A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. American Society of Human Genetics, 69, 570–58. https://pubmed.ncbi.nlm.nih.gov/11481586/
Isarida, T., & Isarida, T. K. (2014). Environmental context-dependent memory. [Online] Available at http://www.ssu.ac.jp/home/isarida/personal/Paper/Environmental%20context-dependent%20memory.pdf
Jansen, J. F. A., Backes, W. H., Nicolay, K., & Kooi, M. E. (2006). 1H MR spectroscopy of the brain: Absolute quantification of metabolites. Radiology, 240(2), 318–332. https://doi.org/10.1148/radio l.24020 50314.
Johansson, M., Gillberg, C., & Rastam, M. (2009). Autism spectrum conditions in individuals with Mobius sequence, CHARGE syndrome and oculoauriculo-veterbal spectrum: Diagnostic aspects. Research in Developmental Disabilities, 30, 9–24. https://pubmed.ncbi.nlm.nih.gov/19709852/
Kikuchi, Y., Senju, A., Tojo, Y., Osanai, H., & Hasegawa, T. (2009). Faces do not capture special attention in children with autism spectrum disorder: A change blindness study. Child Dev, 80, 51421–33. https://pubmed.ncbi.nlm.nih.gov/19765009/
Krnjević, K., & Schwartz, S. (1967). The action of γ-Aminobutyric acid on cortical neurones. Experimental Brain Research, 3(4), 320–336. https ://doi.org/10.1007/bf002 37558.
Lefebvre, L., & Giraldeau, L. (1996). Is social learning an adaptive specialization? En C. M. Heyes & B. G. Galef, Social Learning and the Roots of Culture (pp. 107–52). San Diego: Academic. https://www.researchgate.net/publication/232499114_Social_Learning_in_Animals_The_Roots_of_Culture
Lewczyk, C. M., Garland, A. F., Hurlburt, M. S., Gearity, J., & Hough, R. L. (2003). Comparing DISC-IV and clinician diagnoses among youth receiving public mental health services. Journal of the American Academy of Child and Adolescent Psychiatry, 42, 349–356. https://pubmed.ncbi.nlm.nih.gov/12595789/
Lord, C., Rutter, M., & LeCouteur, A. (1994). Autism Diagnostic Interview-Revised (ADI-R): A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–686. https://pubmed.ncbi.nlm.nih.gov/7814313/
Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (1999). ADOS. Autism Diagnostic Observation Schedule. Manual. Los Angeles: WPS. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.hogrefe-tea.com/recursos/Ejemplos/ADOS-2_extractoWEB.pdf
Lord, C., Petkova,E., Hus,V., Gan,W., Lu,F., Martin, D. M. ... Risi, S. (2012). Amultisite study of the clinical diagnosis of different autism spectrum disorders. Archives of General Psychiatry, 69, 306–313. https://pubmed.ncbi.nlm.nih.gov/22065253/
LoVullo, S. V., & Matson, J. L. (2009). Comorbid psychopathology in adults with autism spectrum disorders and intellectual disabilities. Research in Developmental Disabilities, 30, 1288–1298. https://pubmed.ncbi.nlm.nih.gov/19505790/
Margari, L., De Giacomo, A., Craig, F., Palumbi, R., Peschechera, A., Margari, M., … Dicuonzo, F. (2018). Frontal lobe metabolic alterations in autism spectrum disorder: A (1)H-magnetic resonance spectroscopy study. Neuropsychiatric disease and treatment, 14, 1871–1876. https ://doi.org/10.2147/NDT.S1653 75.
Matson, J. L., González, M., & Wilkins, J. (2009). Validity study of the Autism Spectrum Disorders-diagnostic for children (ASD-DC). Research in Autism Spectrum Disorders, 3, 196–206. https://www.sciencedirect.com/science/article/pii/S1750946708000561
McDermott, K. B., & Roediger, H. L. (2013) Memory, encoding, storage, retrieval. (Online). Available at http://nobaproject.com/modules/memory-encoding-storage-retrieval
Miniscalco, C., & Gillberg, C. (2009). Non-word repetition in young school-ages children with language impairment and/or neuropsychiatric disorder. Research in Developmental Disabilities, 30, 1145–1154. https://pubmed.ncbi.nlm.nih.gov/19375275/
Morton, J., & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychol. Rev., 98, 2164–81. https://pubmed.ncbi.nlm.nih.gov/2047512/
Nijmeijer, J. S., Minderaa, R. B., Buitelaar, J. K., Mulligan, A., Hartman, C. A., & Hoekstra, P. J. (2008). Attention-deficit/hyperactivity disorder and social dysfunctioning. Clinical Psychology Review, 28(4), 692–708. https://pubmed.ncbi.nlm.nih.gov/18036711/
Ojea, M. (2023). Perceptual-Behavioural Precision Scale. PS-PC-ASD. Lima (Perú): Ed. Barcelona. https://libreriaites.com/producto/escala-de-precision-perceptivo-conductual-ep-pc-tea/
Pellicano, E. (2012). The development of executive function in autism. Autism Research and Treatment, 146132. https://pubmed.ncbi.nlm.nih.gov/22934168/
Pellicano, E., & Burr, D. (2006). When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16, 504–510. https://pubmed.ncbi.nlm.nih.gov/22959875/
Pizzarelli, R., & Cherubini, E. (2011). Alterations of GABAergic signaling in autism spectrum disorders. Neural Plasticity. https ://doi. org/10.1155/2011/297153
Purcell, D. G., & Stewart, A. L. (1988). The face-detection effect: configuration enhances detection. Percept. Psychophys, 43, 4355–66. https://pubmed.ncbi.nlm.nih.gov/3362664/
Puts, N. A. J., Wodka, E. L., Harris, A. D., Crocetti, D., Tommerdahl, M., Mostofsky, S. H., & Edden, R. A. E. (2017). Reduced GABA and altered somatosensory function in children with autism spectrum disorder. Autism Research, 10(4), 608–619. https://doi.org/10.1002/ aur.1691
Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci USA, 99(7), 4436–41. https://pubmed.ncbi.nlm.nih.gov/11891325/
Reader, S. M., Hager, Y., & Laland, K. N. (2011). The evolution of primate general and cultural intelligence. Philos. Trans. R. Soc. B 366, 15671017–27. https://pmc.ncbi.nlm.nih.gov/articles/PMC3049098/
Risi, S., Lord, C., Gotham, K., Corsello, C., Chrysler, C., Szatmari, P., Cook-Jr, E. H., ... Pikles, A. (2006). Combining information from multiple sources in the diagnosis of autism spectrum disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 45, 1094–1103. https://pubmed.ncbi.nlm.nih.gov/16926617/
Rutter, M., Le Couteur, A., & Lord, C. (2003). ADI-R Autism Diagnostic Interview Revised Manual. Los Angeles: Western Psychological Services. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.hogrefe-tea.com/recursos/Ejemplos/ADI-R-Extracto-Manual.pdf
Salva, O. R, Farroni, T., Regolin, L., Vallortigara, G., & Johnson, M. H. (2011). The evolution of social orienting: evidence from chicks (Gallus gallus) and human newborns. PLOS ONE, 6, 4e18802. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018802
Seyfarth, R. M., & Cheney, D. L. (2015). Social cognition. Anim. Behav., 103, 191–202. https://psycnet.apa.org/record/2015-19417-027
Shah, P., Gaule, A., Bird, G., & Cook, R. (2013). Robust orienting to protofacial stimuli in autism. Curr. Biol., 23, 24, R1087–8. https://pubmed.ncbi.nlm.nih.gov/24355781/
Smith, S. Handy, J., Angello, G., & Manzaon, I. (2014). Effects of Similarity on Environmental Context Cueing. Memory, 22(5), 493–508. https://pubmed.ncbi.nlm.nih.gov/23721293/
Smith, S., & Vela, E. (2001) Environmental context-dependent memory: A review and meta-analysis. Psychonomic Bulletin & Review, 8(2), 203-220. https://psycnet.apa.org/record/2001-07942-002
Snow, P. J. (2016). The structural and functional organization of cognition. Frontiers in Human Neuroscience, 10, Article 501. https://doi.org/10.3389/fnhum.2016.00501
Sodian, B., & Thoermer, C. (2008). Precursors to a theory of mind in infancy: Perspectives for research on autism. Quarterly Journal of Experimental Psychology (Hove), 61(1), 27–39. https://pubmed.ncbi.nlm.nih.gov/18038336/
Sung, Y., Dawson, G., Munson, J., Estes, A., Schellenberg, G. D., & Wijsman, E. M. (2005). Genetic investigation of quantitative traits related to autism: Use of multivariate polygenic models with ascertainment adjustment. American Journal of Human Genetics, 76, 68–81. https://pubmed.ncbi.nlm.nih.gov/15547804/
Tanji, J., & Hoshi, E. (2008). Role of the lateral prefrontal cortex in executive behavioral control. Physiological Reviews, 88(1), 37–57. https://doi.org/10.1152/physrev.00014.2007
Tomalski, P., Csibra, G., & Johnson, M. H. (2009). Rapid orienting toward face-like stimuli with gaze-relevant contrast information. Perception, 38, 4569–78. https://pubmed.ncbi.nlm.nih.gov/19522324/
Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5) 352-373. https://psycnet.apa.org/record/2005-09647-002
Wang, Y., Zhang, P., & Wyskiel, D. R. (2016). Chandelier cells in functional and dysfunctional neural circuits. Frontiers in Neural Circuits, 10, Article 33. https://doi.org/10.3389/ fncir.2016.00033
Zaitsev, A. V., Gonzalez-Burgos, G., Povysheva, N. V., Kroner, S., Lewis, D. A., & Krimer, L. S. (2005). Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cerebral Cortex, 15(8), 1178–1186. https://doi.org/10.1093/cercor/bhh218

No comments:
Post a Comment
Note: only a member of this blog may post a comment.