Manuel Ojea Rúa, 31-10-2024
New Conceptual Paradigm of Autistic Spectrum Disorder
Manuel Ojea Rúa, PhD.
University of Vigo, Spain, ORCID: https://orcid.org/0000-0002-9787-2520.
ABSTRACT: The two dimensions currently included in international classifications should include a third defining dimension,
regarding to the analysis of intensity of needs relationship to the main parameters of psychoneural information processing, within
the so-called processual dimension: - perception and sensory memory, - encoding and categorical grouping, - access of
information to permanent memory, and - recovery of information in semantic terminology. These new criteria constitute basic
elements governing the neurocerebral process in a global sense, which will allow the persistence or improvement of observable
social and restrictive-stereotyped behaviours related to the two dimensions included in the currently classifications.
An exhaustively analysed Case Study in all its evolution over 32 years, has allowed successive comparative analyses regarding the
differential phases with the specific autistic diagnosis, whose final results allowed confirming new paradigmatic findings of new
paradigmatic definitions of autistic disorder, its differential diagnostic processing and, therefore, the new specific kinds of
psychoeducational intervention.
KEY WORDS: Autistic Spectrum Disorder. New paradigm. Conceptual- propositional. Diagnosis. Intervention pycho- social and
educational.
REFERENCES
1. Adorjan, I., Ahmed, B., Feher, V., Torso, M., Krug, K., Esiri, M., ... & Szele, F. G. (2017). Calretinin interneuron density
in the caudate nucleus is lower in autism spectrum disorder. Brain, 140(7), 2028–2040.
https://doi.org/10.1093/brain/awx131
2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th). American
Psychiatric Publishing. https://www.amazon.es/stores/American-Psychiatric-Association/author/B00LZF2ELC?ref=ap_
rdr&isDramIntegrated=true&shoppingPortalEnabled=true
3. Amina, S., Falcone, C., Hong, T., Wolf-Ochoa, M. W., Vakilzadeh, G., Allen, E., ... & Martinez–Cerdeno, V. (2021).
Chandelier cartridge density is reduced in the prefrontal cortex in autism. Cerebral Cortex, 31(6), 2944–2951.
https://doi.org/10.1093/cercor/bhaa402
4. Ariza, J., Rogers, H., Hashemi, E., Noctor, S. C., & Martinez–Cerdeno, V. (2018). The number of chandelier and basket
cells are differentially decreased in prefrontal cortex in autism. Cerebral Cortex, 28(2), 411–420.
https://doi.org/10.1093/cercor/bhw349
5. Brown, C., Gruber, T., Boucher, J., Rippon, G., & Brock, J. (2005). Gamma abnormalities during perception of illusory
figures in autism. Cortex. A Journal Devoted to the Study of the Nervous System and Behavior, 41, 364–376.
https://pubmed.ncbi.nlm.nih.gov/15871601/
6. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Minicolumnar pathology in autism. Neurology,
58(3), 428–432. https://doi.org/10.1212/wnl.58.3.428
7. Center for Disease Control and Prevention (CDC). (2010). Prevalence of autism spectrum disorders–autism and
developmental disabilities monitoring network, United States. Morb Mortal Wkly Rep. 2014; 63(2).
https://pubmed.ncbi.nlm.nih.gov/22456193/
8. Courchesne, E., Mouton, P. R., Calhoun, M. E., Semendeferi, K., Ahrens-Barbeau, C., Hallet, M. J., ... & Pierce, K.
(2011). Neuron number and size in prefrontal cortex of children with autism. JAMA, 306(18), 2001–2010.
https://doi.org/10.1001/jama.2011.1638
9. Dufour, B. D., McBride, E., Bartley, T., Juarez, P., & Martínez–Cerdeño, V. (2023). Distinct patterns of GABAergic
interneuron pathology in autism are associated with intellectual impairment and stereotypic behaviors. Autism, 27(6)
1730–1745. DOI: 10.1177/13623613231154053. journals.sagepub.com/home/aut
10. Falcone, C., Mevises, N. Y., Hong, T., Dufour, B., Chen, X., Noctor, S. C., & Martinez–Cerdeno, V. (2021). Neuronal
and glial cell number is altered in a cortical layer-specific manner in autism. Autism, 25(8), 2238–2253.
https://doi.org/10.1177/13623613211014408
11. Hadjikhani, N., Zürcher, N. R., Rogier, O., Ruest, T., Hippolyte, L., .... & Lemonnier, E. (2015). Improving emotional
face perception in autism with diuretic bumetanide: A proof-of-concept behavioral and functional brain imaging pilot
study. Autism, 19(2) 149–157. DOI: 10.1177/1362361313514141
12. Hashemi, E., Ariza, J., Rogers, H., Noctor, S. C., & Martinez–Cerdeno, V. (2017). The number of parvalbuminexpressing interneurons is decreased in the prefrontal cortex in autism. Cerebral Cortex, 27(3), 1931–1943.
https://doi.org/10.1093/cercor/bhw021
13. Hollocks, M. J., Lord, C., Charman, T., Gillian, B., Pickles. A., & Simonoff, E. (2022). Exploring the impact of
adolescent cognitive inflexibility on emotional and behavioural problems experienced by autistic adults. Autism, 26(5)
1229–1241. https://doi.org/10.1177/13623613211046160
14. Hutsler, J. J., & Zhang, H. (2010). Increased dendritic spine densities on cortical projection neurons in autism spectrum
disorders. Brain Research, 1309, 83–94. https://doi.org/10.1016/j.brainres.2009.09.120
15. Kang, J. Q., & Barnes, G. (2013). A Common Susceptibility Factor of Both Autism and Epilepsy: Functional Deficiency
of GABA [subscript A] Receptors. Journal of Autism and Developmental Disorders, 43(1), 68–79.
http://www.springerlink.com.acceso.uvigo.gal
16. Kohane, I. S., McMurry, A., Weber, G., MacFadden, D., Rappaport, L., Kunkel, L., ... & Churchill, S. (2012). The
comorbidity burden of children and young adults with autism spectrum disorders. PLOS ONE, 7(4), Article e33224.
https://doi.org/10.1371/journal.pone.0033224
17. Lawrence, Y. A., Kemper, T. L., Bauman, M. L., & Blatt, G. J. (2010). Parvalbumin- calbindin-, and calretininimmunoreactive hippocampal interneuron density in autism. Acta Neurologica Scandinavica, 121(2), 99–108.
https://doi.org/10.1111/j.1600-0404.2009.01234.x
18. Lord, C., Rutter, M., Dilavore, P. C., Risi, S., Gotham, K., & Bishop, S. L. (2012). Autism Diagnostic Observation
Schedule, second edition (ADOS-2). Western Psychological Services. DOI: 10.1007/978-1-4419-1698-3_896
19. Maenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., DiRienzo, M., ... & Dietz, P. M. (2020). Prevalence
of autism spectrum disorder among children aged 8 years–Autism and developmental disabilities monitoring network, 11
sites, United States, 2016. MMWR Surveillance Summaries, 69(4), 1–12. https://doi.org/10.15585/mmwr.ss6904a1
20. Mizuno, A., Liu, Y., Williams, D. L., Keller, T. A., Minshew, N. J., & Adam, M. (2011). The neural basis of deictic
shifting in linguistic perspective-taking in high-functioning autism Just Brain. A Journal of Neurology, 134, 2422–2435.
DOI: 10.1093/brain/awr151
21. Nardou, R., Yamamoto, S., Bhar, A., Burnashew, Y., Ben–Ari, I., & Khalilov, I. (2011). Phenobarbital but Not Diazepam
Reduces AMPA/kainate Receptor ediated Currents and Exerts Opposite Actions on Initial Seizures in the Neonatal Rat
Hippocampus. Frontiers in Cellular Neuroscience, 5, 16. https://pubmed.ncbi.nlm.nih.gov/21847371/
22. Nardou, R., Yamamoto, S., Chazal, G., Bhar, A., Ferrand, N., Dulac, O., ... & Khalilov, I. (2011). Neuronal chloride
accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital. Brain, 134,
987–1002. https://pubmed.ncbi.nlm.nih.gov/21436113/
23. Ojea, M. (2023). Perceptual-behavioural assessment scale: EP-PC-TEA. Lima, Perú.
https://libreriaites.com/producto/escala-de-precision-perceptivo-conductual-ep-pc-tea/
24. Pizzarelli, R., & Cherubini, E. (2011). Alterations of GABAergic signalling in autism spectrum disorders. Neural
Plasticity, 297153 (12 pp.). https://onlinelibrary.wiley.com/doi/10.1155/2011/297153
25. Rivière, A. (2002). IDEA: Inventario del Espectro Autista. Facatativá–Cundinamarca: Fundec.
https://www.asemco.org/documentos/asemco-idea.pdf
26. Rubenstein, J. L. R. (2011). Annual Research Review: Development of the Cerebral Cortex--Implications for
Neurodevelopmental Disorders. Journal of Child Psychology and Psychiatry, 52(4), 339-355.
http://www.wiley.com.acceso.uvigo.gal/WileyCDA/
27. Rutter, M., LeCouteur, A., & Lord, C. (2003). Autism Diagnostic Interview, Revised. Los Angeles: Western
Psychological Services. https://link.springer.com/referenceworkentry/10.1007/978-1-4419-1698-3_894
28. Schuck, M., & Swanson, Ch. I. (2019). Infantile Spasms: The Role of Prenatal Stress and Altered GABA Signaling.
HAPS Educato, 23(2), 420-25. https://doi.org/110.21692/haps.2019.017
29. Shields, W. D. (2006). Infantile spasms: little seizures, BIG consequences. Epilepsy currents, 6(3), 63–9.
https://pubmed.ncbi.nlm.nih.gov/16761063/
30. Stahmer, A. C., Suhrheinrich, J., Schetter, P. L., & Hassrick, E. Mc. (2018). Exploring multi-level system factors
facilitating educator training and implementation of evidence-based practices (EBP): A study protocol. Implementation
Science, 13, 3. DOI: 10.1186/s13012-017-0698-1.
https://implementationscience.biomedcentral.com/articles/10.1186/s13012-017-0698-1
31. Wegiel, J., Kuchna, I., Nowicki, K., Imaki, H., Wegiel, J., Marchi, E., ... & Wisniewski, T. (2010). The neuropathology
of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathologica, 119(6), 755–
770. https://doi.org/10.1007/s00401-010-0655-4
32. Wilson, T. W., Rojas, D. C., Reite, M. L., Teale, P., & Rogers, S. J. (2007) Children and adolescents with autism exhibit
reduced MEG steady-state gamma responses. Biological Psychiatry 62, 192–197.
https://www.sciencedirect.com/science/article/abs/pii/S0006322306008663
33. World Health Organization. (2024). ICD–11. International Classification of Disease 11ht Revision. World Health
Organization. https://icd.who.int/es/